
1

A GUIDE TO MOBILE APP DEVELOPMENT

BY PRECIOUS DAMISA E.

2

CONTENTS

What is your story? 1

Introduction 2

This book, what is it about?

How this book is organized

Part 1: Learning the Dart Programming Language

 1 Setting up Your Computer

 Installing the Intellij IDEA Integrated Development Environment

Setting Up Intellij IDEA to Run Dart Programs

 Getting The Dart Software Development kit

 2 The Building Blocks

Variables, values and types

int

double

String

List

Map

 3 keywords, Comments and Errors

 Dart’s Keywords

 Types of Comments and Their Use

 Errors

 Types of Errors

 4 Functions

 What Is A Function?

 Types of Functions

 Returning Values from a Function

 The Use of Parameters

 Lexical Scope

3

5 Operators

 Arithmetic Operators

 Relational Operators

 Logical Operators

6 Control Flow Statements

 Selection Statements

 If, else and else if

 Switch and case

 Conditional expressions

 Repetition Statements

 For loop

 While loop

Do while loop

 Jump Statements

 Break and continue

7 Object Oriented Programming

 What is a class?

 What is an object?

 Constructors

 Extending a class

 8 Advanced Topics

 Generics

 Enum

 Exceptions

Part 2: Building Mobile Applications with Dart and Flutter (Video

Series)

4

WHAT IS YOUR STORY?

❖ Are you a student looking to acquire a skill that would make you more powerful

and enterprising than your mates or one who needs some extra reading/training

in order to do well in a beginning computer course?

❖ Are you a worker that is looking to learning how the computers in your workplace

operate, i.e. how they’ve been programmed to do the amazing computation,

analysis and problem solving that they do?

❖ Are you one that uses a computer for tasks such as word processing, designs

etc. and wants to do something more interesting with your machine?

❖ Are you a job finder that is interested in delving into the world of computer

programming and application development, which is one of the more prestigious

and highly sought after career today?

Well, if you want to write computer programs and build applications, then this book is for

you. This books takes a gentler approach at explaining computer programming

terminologies, as it relates to building applications, so that its content can be easily

grasped by the reader, who can be from any field, level, age or gender. Yes! Gender,

because it is common in our world today, to find more males aspiring towards

technological ventures such as programming and application development, than

females. That should never be the case though. Programming is for all, so this book

does its own part in making that perceivable and easily achievable.

5

INTRODUCTION

THIS BOOK, WHAT IS IT ABOUT?

This book shares solid information on how to use the programming language

(Dart) to build mobile applications. Mobile applications that can work on an Android and

IOS phone. I guess that sounds like killing two birds with one stone. How amazing is

that? If you’re wondering what a programming language is, then let me take this time

to quickly explain to you what it is, as it is the requirement for building mobile

applications.

 Let me start by using an analogy. You and I communicate with one another using

a known language (English, Yoruba, Hausa, Igbo, etc.) we express our ideas to one

another, we give instructions to one another and expect the person receiving the

instructions to carry out those instructions and then provide a result. That is exactly

what a programming language is like. Although, a programming language is not used

for a human to human communication, rather it is used for human to computer

communication. You use a programming language to communicate your ideas to a

computer, you tell the computer what to do, when to do it and how to do it. Some

ignorant persons may argue that computers are smarter than humans, but it's actually

the other way round, computers are very dull, they are useless without the instructions

that tell them what to do.

We’re going to start from scratch and learn how to properly tell the very dull

computer how to do some simple things. From there, we would progress to more

complex and interesting stuffs, such as writing instructions for the computer, to build our

desired applications and execute relevant tasks.

 I mentioned that we would learn how to build applications that work on an

Android and IOS phone, which is very interesting because there are several ways to

build mobile applications. Some ways don’t allow you to build applications that would

work on both platforms (Android & IOS), but in this book, we shall learn how to build

multiplatform mobile applications.

This ability to build applications that work on both operating systems is made

possible by a technology called Flutter. Flutter is a framework or tool, which was built

by the renowned tech company giant, Google. And they made it free for everyone, to

learn and use it in building applications as pleased. Also you should know that the

programming language Dart, was also developed by the same company Google.

Just so you don’t get it confused, let me reiterate. Dart is the name of the

programming language which is used in tight collaboration with Flutter to build mobile

applications. Dart on its own is a programming language, while Flutter is a framework

for Dart. By framework, I mean that Flutter is a set of prebuilt components that make are

6

used in a mobile application. The tools which flutter provides, help us in developing an

application, packaging it, and makes it possible that we can install it on our phones. The

prebuilt components that Flutter ships with, makes it possible to easily get started with

developing a mobile app. Take for example, when you want to develop an application,

you’re definitely going to have some screens in the app that display a button, which a

user can tap on, or some text that convey some message to the user. Just so we don’t

have to design all these basic and needed components from scratch ourselves, Flutter

had to make them available. Some of the UI (User Interface) components that Flutter

contains are buttons and those for displaying text, images, amongst many others. As

the programmer or app developer, you can easily use these already provided

components in building your application and also based on your knowledge of the Dart

programming language, which is what was used in designing the components in the first

place, you can use your Dart knowledge to easily build new components or customize

the prebuilt components for your application.

Don’t worry much if all these explanations are being a little difficult to grasp. It is

all what this book aims to guide you on. As you progress in your study of the book, it

would all become clearer.

 HOW THIS BOOK IS ORGANIZED

This book is organized into two parts mainly: part 1 and part 2. The parts are

further broken down into a series of chapters.

In part 1, we shall cover a lot on the Dart programming language, we shall look at

the key areas that are required to get you started when it comes to building mobile

applications with Flutter.

Part 2 of this book focuses on using the Flutter framework to build mobile

applications. Being able to efficiently build apps with Flutter requires one to have a good

knowledge of the Dart programming language. That is why I decided it was best we

began, by first trying to understand the rudiments of the Dart language, before finally

delving into Flutter. You can see it as us trying to grab our tools, which would be needed

for work later.

Throughout the book, important keywords and definitions are bolded. This was

done, so as easily draw the attention of the user to such keywords and definitions,

which he/she should take proper note of.

If you encounter any word that you aren’t familiar with, please first consult the

glossary section of the book, which contains definitions of most of the technical words

that are used in the book.

7

CHAPTER 1

SETTING UP YOUR COMPUTER

In this chapter, we shall go through the steps required in setting up your computer to run

Dart programs. For convenience and also, to reduce the amount of downloads you

would have to do, I put together the required applications that would be needed in

setting up your computer to run Dart programs, these are bundled in the portable flash

drive that is made available with this book. So all you have to do, is follow the

installation steps for getting it all to work. Installation steps are specified in the video

series.

8

CHAPTER 2

THE BUILDING BLOCKS

In this chapter, we shall look at what variables, values and types are, and how they

are used in the Dart programming language. These are the building blocks of any

programming language, not just Dart, so a good grasp of these concepts is required.

Variables, Values and Types

A variable is like a container that something can be put into. While a value, is what is

put into a variable. Just as a container, e.g. a bucket can hold different kinds of things,

that’s how a variable can hold different kinds of values. So, where do types come in? A

type for a variable is used to specify exactly what kind of value can be put into a

variable.

 Dart is a statically or strongly typed language. What that means is that, Dart

defines some types which can be used to specify the kind of value that a variable can

hold, when the variable is defined. Some of these types include; int, double, String,

bool, List, Map, etc. Don’t worry if you don’t know what these strange names mean, we

will soon uncover what they all mean and how they can be used in writing programs.

I bet your hands are a little itchy right about now, you want to begin write some

codes. Well, same with mine, enough talking already. Let’s look at some example

programs on how to define a variable. Although, an advice before that. The example

programs in this book are screenshots of code written in the Intellij IDEA code editor.

One major advantage of that is, as the reader, you get to do a lot of hands-on practice

by typing out the code from the screenshots into your own editor, which would help

quicken your learning, because typing out code and reflecting on it during the process is

the best ways to learn programming. I would therefore advise that you take out time to

do as much practice as possible. With that said, let’s proceed to see our first few lines of

Dart code.

int

The int type short for integer, is used to define variables that can only store whole

numbers, i.e. numbers that do not contain a decimal point.

9

Screenshot 2.1

The program above contains a variable definition. A variable definition consists of two

parts. One is the declaration part, while the other is the initialization part. In our

program, which spans from line 1 to line 5. It is on line 2 that we have the variable

definition. The variable has the name, age and it has been assigned the value 50. On

that line, the part before the equality sign (=) is the declaration part. It consists of the

variable type and the name of the variable, while the part after the equality sign is the

initialization part, it consists of the value to be assigned to the variable. Observe that

after the value 50, there’s a semicolon, the semicolon signifies an end of statement.

That is how you end a code statement in the Dart language, in this case, the variable

definition statement. It’s similar to how you end a written statement in a normal human

language, say English for example, where you would use a full stop (.).

 Let’s further dissect each of those parts (the declaration and the initialization

part). The word int as explained earlier, is a special type in Dart that allows you declare

a variable that can only hold a number (an integer). Integers are numbers that don’t

have a decimal point, e.g. -3, -2, -1, 0, 1, 2, 3, etc. After the type int, next is the word

age, which is the variable name. Variable names are user invented words, they’re words

that you and I come up with when writing programs. When you define a variable, you

have to give the variable a name, so that you can use that name whenever you want to

access the value that the variable refers to. Just after the variable name, we have the

equality symbol (=). This is referred to as the assignment operator, not to be confused

with the equality symbol that is used in mathematics, which is used to represent the fact

that, what is at the left of the symbol, is exactly the same as what is at the right. After

the assignment operator, is the number 50, which is the actual value that is passed to

the variable, and can be used in the program. Here, we’re simply printing out the value,

which is why in the console view, you find the value 50. The printing is done with the

help of the print function that you find on line 4. A function performs some operation.

10

The print function performs the operation of outputting a variable’s value to the console

view. More on functions in chapter 5.

 It is possible to reassign a new value to a variable after the first

assignment, an example of how that is done is shown below.

Screenshot 2.2

You can see that when the age variable was printed out, we got the recent value that

was assigned to it, i.e. 60.

 Note that an attempt to assign a value that is not an integer to a variable of

type int, results in an error. This is the same with other types. Once a variable has

been declared to be of a particular type, the variable can only contain values that

are of that type.

double

The type double, just like int, is also used for declaring a variable that can hold a

number, although numbers that contain a decimal point. An example of this is shown

below.

11

Screenshot 2.3

Declaring a variable to be of type double, uses the same syntax as declaring a variable

to be of type int, or of any other type. The word syntax refers to how the various parts of

a program statement are structured. Just like every other programming language, Dart

has its own language syntax.

As a Dart programmer, you need to have a good knowledge of the language

syntax, so as to write proper Dart code, i.e. code that doesn’t contain errors.

When it comes to defining number variables, we’re not just limited to using the int

and double types. There is a keyword (though not a type), that can be used to define

number variables as well. It is called num. When a variable is defined using the num

keyword, the variable is able to contain either integer values or decimal values. An

example of this is shown below.

12

Screenshot 2.4

String

The String type is used to declare a variable that can hold a sequence of characters. A

good example is the name of a person (e.g. Moses), or any bunch of characters, even a

single character (e.g. A) can be treated as a String.

Observe that the type String, starts with an uppercase letter, unlike int and

double. So, remember to always spell it that way.

Screenshot 2.5

13

Any arbitrary sequence of characters can be used to form a String value. Actually, any

character or symbol you type in from the keyboard can be used as the value for a

String, so long as you tell Dart to treat that character, number, symbol, or set of

characters as a String, by wrapping it in double or single quotation marks, as shown in

the example code above.

Before proceeding, there are some concepts I want to draw your attention to,

when it comes to choosing the name for a variable.

First, observe how the variables in the previous program are spelt

(phoneNumber, favoriteLetter, and mixedCharacters), they are a combination of two

words.

The thing is, there are some rules guiding how the name for a variable should be

composed and how they should be spelt. Let’s explore these rules.

1. Variable names in Dart can only begin with a letter or an underscore (_). Using

any other symbol or character, would result in an invalid name.

2. When you choose a name for a variable, ensure that the name is related to the

value you intend to store in it. This will help you and other programmers who go

through your code to easily understand what value a variable contains and what

it is being used for.

3. A variable name cannot be the same as a Dart keyword. We will get to know

what keywords are when we talk about them in chapter 3.

4. This 4th rule is more or less a recommendation. It explains why the variable

names that are made up of more than one word in the program above were spelt

the way they’re.

When you have a variable name that is made up of more than one word,

you could either go with the style of making the first letter of each word, except

the first word, an uppercase. This is referred to as lowerCamelCasing. Or you

could go with the style of using an underscore to separate each word (e.g.

phone_number, favorite_letter and mixed_characters etc.). Adhering to this

recommendation, brings about more code readability and ensures consistency.

We’ve seen how a String value can be defined using either single or double quotation

marks. However, there are times that you’re required to use either single or double

quotation marks.

Assuming you have a text such as Moses said “he will not come to class today” and you

want to make it a String value. This text contains double quotation marks within it,

14

therefore it won’t be possible to make it a String value by wrapping it with double

quotation marks. Doing so would result in an error. To make it work, it should be

wrapped with single quotation marks.

 Also, if you have some text that contains a single quotation mark, then in order to

make that text a valid String value, it must be wrapped with double quotes.

Screenshot 2.6

Another way such String values that contain single or double quotes can be defined is

with the use of the escape character (\). This \ is one of many escape characters that

can be used to alter the normal behavior of a String value.

15

Screenshot 2.6

The \ used in a String value, tells Dart to treat whatever character that comes after it just

as it is, in this case, the double and single quotation marks. With that, it becomes

possible to wrap the String value on line 2 with double quotes, while having double

quotes inside the String value. Same with the String value on line 3.

 Other common escape characters include the newline (\n) and the tab (\t). When

Dart is printing a String value and it encounters the newline (\n) character, it jumps to

the next line and continues printing it on that line. While the tab (\t) character tells Dart

to include spaces in a String, similar to that which is made with the tab key on the

keyboard.

Screenshot 2.7

It is possible to define a String value that spans several lines. To do that, simply wrap

the String value with triple quotes (single or double) as shown below.

16

Screenshot 2.8

String Interpolation

It is possible to include a variable inside of a String value. A process known as string

interpolation.

Screenshot 2.9

Using the dollar sign ($) to include a variable in a String value is referred to as string

interpolation. What the dollar sign does, is to convert the value of the variable into a

String value, so that it can be safely included as part of the String value.

17

When you need to include an expression in a String value, then curly brackets

have to be used in wrapping the expression as shown below.

Screenshot 2.10

Here, we’ve performed a simple addition operation, but more complex expressions, like

function calls, calling methods on objects, etc. can be performed in a String value, using

this same approach. You shall learn all about those in the later chapters.

String Concatenation

It is possible to join two or more String values together to form a single String value.

This is a process known as string concatenation.

18

Screenshot 2.11

The plus symbol (+) joins two or more String values together. Although, for the program

above, there’s an issue with the way the String values are printed out. There is no

space between them. That is because in the code, the String values do not contain any

space around them, so Dart simply joins them the way they’re and prints them out like

that. To remedy this, we can add spaces in the String values as we would want them to

be when they’re printed out. There are so many ways of achieving this. Here are two

possible ways.

19

Screenshot 2.12

In the program above, for the first String values that would be joined together and put in

the message1 variable, we included a space in the String value (“Hello “), also in the

String value (“Moses “). When the String values are joined together, it becomes Hello,

Moses Adebayo. The same thing was done for the message2 variable.

20

Screenshot 2.13

Here, we created a String value that contains a single space character using either

single or double quotes (‘ ’, “ ”) and joined it to the other String values.

bool

The bool type is a very interesting type.

Analogy time: Imagine mama Dayo asking Dayo a question, and she expects him to

give her a yes (true) or no (false) answer.

Mama Dayo: Dayo, did you take meat from the cooking pot?

Dayo: Mummy, I did not enter the kitchen today at all.

Mama Dayo: Dayo, I’m going to ask you for the last time, did you take the meat, yes or

no?

With that last question, Dayo is going to have to provide his mum with a yes (true) or no

(false) answer, nothing else, no stories.

That’s exactly what you get when you declare a variable to be of type bool. A

bool variable can only hold the value of true or false, nothing else. Please note that

true or false are not String values. They’re not wrapped in single or double quotes.

21

Screenshot 2.14

bool values (true or false) are most times used in writing code that gets executed

conditionally. You could write a program that checks the value stored in a bool variable,

if it is true, then the program would behave in a certain way, if it is false, then it would

behave in a different way. You will learn all of that when we get to chapter 6 (control

flow statements).

List

In the real-world, you often find yourself putting together a list of some items. Take

Mama Nkechi for example, whenever she wants to go to the market, she would get a

piece of paper and write down the names of the items she wants to buy, and she would

end up with a list of items. When little Ibrahim first learnt how to count the numbers, he

would make several long lists of numbers, numbering 1 – 100 and so on.

A list in Dart is no different, it is made up of similar or dissimilar items. A list

could contain values of different types (int, double, String, etc.), or values of the same

type.

22

Screenshot 2.15

The code above shows how a list can be created in Dart. You can see the list is made

up of items (values) of different types. Observe how all the items are wrapped with

square brackets and each item in the list is separated with a comma (,). That’s how Dart

knows the number of items you have in a list. The square brackets for defining a list are

referred to as the list literal. Later, in this book, you shall learn how to use the List

constructor to create a list, it’s more of an advanced way of doing it, and so we shall

defer it till chapter 8, when you must have learnt about Object Oriented Programming

(OOP). One thing we can also do, is to create a list that contains items (values) of a

particular type, e.g. a list that contains only values of type String, or int, or double etc.

We shall explore how to create such lists, when we get to the topic of generics in

chapter 8.

 One very important thing to note about a list in Dart and other programming

languages is that, lists use zero-based index. What does that mean?

Using the analogy I cited earlier, when Mama Nkechi makes a list of the items she

hopes to buy in the market, she gives the first item the number one (1), the next item

she gives the number two (2), and so on. This is the normal way we number items in

real-life. However, it is not the same in Dart, Dart doesn’t assign the number 1 to the

first item in a list, instead it assigns the number zero (0). That’s what zero-based index

means. The index of a list item refers to the position of the item in the list. So, if we want

to retrieve any item from the list, we would use its index. Take the list in the below

program for example, assuming we want to individually access the items in the list, to

access the first item in the list, we would access it using its index, which is zero (0), the

next item has the index 1, the next item has the index 2 and so on.

23

Screenshot 2.16

Observe how on lines 4 through 7, individual values in the list were retrieved and put

into variables of their respective type. While on lines 9 through 12, the values were

retrieved and printed.

Map

The Map type isn’t as straightforward as the previous types we’ve looked at, so please

pay close attention to its explanation. When you declare a variable to be of type Map,

the value you assign to it, is a map that that contains keys and values, where each key

corresponds to a value in the map.

24

Screenshot 2.17

Observe the way a map is created. When we created a list, we wrapped the list items in

square brackets ([]), but for a map, we use curly brackets ({}). The curly brackets for

defining a map are referred to as the map literal. Later, in this book, you shall learn

how to use the Map constructor to create a map, it’s more of an advanced way of doing

it, and so we shall defer it till chapter 8, when you must have learnt about Object

Oriented Programming (OOP).

Remember I said a map usually contains keys and values, I’m sure you can guess

which are the keys and values in the map we created above. The keys in the map

above are; name, age, occupation, isMarried, and hobbies, and they are all String

values. While the values which the keys correspond to are; Moses Adebayo, 20, Doctor,

true and the list of String values. Also, observe how each key-value pair is separated

with a comma. Keys in a map are commonly string values and they must be

unique, but two or more values could be the same.

 Other than printing out the full map, as we’ve done above, it is possible to access

the individual values of the map, using their keys.

25

Screenshot 2.18

Other than retrieving a value in a map through its key, we can also add a new key-value

pair to the map, as shown in the following program, on lines 9 and 10.

26

Screenshot 2.19

As I mentioned in the beginning of this chapter, Dart is a strongly typed

language, which means it allows us specify the exact type of a variable when it is

defined. As a result of that, we are able to write solid code that is free of such errors as

assigning a value of a different type to a variable, e.g. assigning a String value to an int

variable. Dart can help us avoid such mistakes.

 So far, we’ve seen how to declare variables using a specific type. Which would

therefore mean that the variable can only be assigned a value of that type. It is possible

to declare a variable that can be assigned any kind of value. To do so, we use the var

keyword.

27

Screenshot 2.20

In screenshot 2.20, you can see how the var keyword is used in declaring variables that

can hold any value. Note that once a value of a specific type has been assigned to a

variable declared using the var keyword, the variable won’t be able to hold any other

kind of value, except values of the type that was initially assigned to it. Take the firstVar

variable in the program above, since a String value was assigned to it, assigning a

value of a different type later on won’t be possible.

We’ve seen much on variables and the different values that can be put into them.

However, one question that could come to mind is; what does a variable contain when it

has not been assigned a value? Is it just empty or does it contain an initial value of

some sort. In real life, a container doesn’t really hold anything if nothing has been put

inside of it. You can easily look into the container to know if it contains something or not.

However, when a variable is defined in the Dart programming language, and hasn’t

been assigned a value, it holds an initial value of null. null simply means “empty” or

“nothing”. When you print out a variable and it shows null, it means that the variable has

not been giving any value.

28

Screenshot 2.21

You can see that when the name and age variables were printed out, without assigning

any value to them, they both retained their default value null.

Summary

In this chapter, you learned about variables, types and values. As I mentioned earlier,

these are the building blocks of any programming language. However, there are some

other types in the Dart language that we didn’t look at, because they’re rarely used. As

you progress in your Dart and Flutter journey, you may encounter these types and get

to learn about them.

In order to get you started on building applications quickly, I felt it best to only

introduce the more useful and important concepts.

Below are a number of questions or exercises that you should try do. They’re

meant to test your knowledge on some of the concepts that have been introduced to

you, and to help you practice all that you’ve learnt in this chapter. Hence, some of them

are basically about the definitions of terms, while some require you to write programs.

Answers to the questions are in the questions and answers section of this book.

Although I recommend that you attempt each question, before comparing your solution

to the one that has been provided.

Exercises

1. What is a variable?

2. What is a value?

29

3. What is a type?

4. Declare variables of the following types and assign values to them:

- int

- double

- String

- List

- Map

5. When a variable is declared using the num keyword, what kind of value can

be put in it? Write a program to support your answer.

6. When a variable is declared using the var keyword, what kind of values can

be put in it? Write a program to support your answer.

7. After a variable that is declared using the var keyword is assigned a value of

a particular type, can the variable be reassigned another value of a different

type? Write a program to support your answer.

8. What is the difference between string concatenation and string

interpolation?

30

CHAPTER 3

KEYWORDS, COMMENTS AND ERRORS

In this chapter, we shall look at the keywords in the Dart programming language, also

we shall learn what comments are and how to use them. In the previous chapters, I

sometimes mentioned some of the things you should not do, so as to avoid errors. This

chapter covers the types of errors and how they can be managed.

Keywords

Dart, as a programming language has some keywords which are used when writing

Dart programs. When I say keywords, I mean the special words that are built into the

Dart language. These words cannot be used as variable names, but are only used for

their intended purpose. Below is an exhaustive list of all the keywords in the Dart

language, as of version 2.4.

abstract dynamic implements show

as else Import static

asset enum In super

async export interface switch

await extends Is sync

break external library this

case factory mixin throw

catch false new true

class final null try

const finally on typedef

continue for operator var

covariant function part void

default get rethrow while

31

deferred hide return with

do If set yield

As we progress in the course of the book, you shall see how these keywords can be

used when writing programs. Bear in mind that you are not required to commit them all

to memory. You only need remember the ones you use often.

Comments

To explain what comments are and their importance, let me begin by first telling you a

short story. There was this brilliant programmer, her name was Tracy. Tracy was writing

a wonderful AI (Artificial Intelligence) program. The program was thousands of code

lines long, it was going so well, and those who she told about it were really excited and

were eager to see her finish. Just while it remained a little more work for Tracy to be

done with her amazing AI program, she got called for some urgent business that

needed her attention. So she had to stop working on her project for a while. This new

endeavor took more time than she had planned. So, after about two years, she was

done and was now ready to return back and finish up with her AI program.

Unfortunately, when Tracy went through the program, she couldn’t really

understand the structure, or the logic she had built the program with, everything was

now so vague. It was as though it wasn’t her program. So with that, Tracy couldn’t

continue with the AI program, she had to abandon it and begin work on other projects.

Who knows, her AI program would have changed the world.

 One thing that Tracy’s program was lacking was good documentation, Tracy

didn’t add comments to her code, which would have helped her in recalling what each

part of the program was doing. Now, this brings us to our topic “Comments”. What are

comments?

Comments are simply text descriptions that you add to your code, to explain what

the code does. They’re invisible to the Dart compiler - the tool that turns Dart code into

machine code, to be executed by the computer. The compiler doesn’t include comments

when compiling programs. So comments in your source code are only meant for you the

programmer and for other persons who may go through your code. When you declare a

variable for example, you could add a comment, to tell what that variable is used for.

There are 3 types of comments in Dart, they include:

1. Single line comment

2. Multi-line comment

3. Documentation comment

32

Single Line Comment

Single line comments are comments that take up only one line in your code. To write a

single line comment, begin the line with double forward slashes, then followed by the

text.

Screenshot 3.1

The comment in the program above is referred to as a single line comment because of

the double forward slashes that are placed before the text. It is possible to have more

than one single line comment for a piece of code. To do that, simply precede the other

lines with the same double forward slashes.

Screenshot 3.2

Multiline Comment

A multiline comment is created by wrapping the text with (/* */), is a way to create

comments that span several lines, it is used when there’s more to be said about some

code that would otherwise not fit into a single line.

33

Screenshot 3.4

Documentation comment

Documentation comment is a special kind of comment. Dart treats documentation

comments differently than other comments. When you add documentation comments to

your code, within the comment, you can include the names of variables and other

program features like functions and parameters. Documentation comments can be

written using triple forward slashes and then the text.

Screenshot 3.5

Observe how emphasis is placed on the isLoggedIn variable by wrapping it in square

brackets.

Errors

Errors refer to mistakes that are made when writing programs. There are three (3) major

kinds of errors.

1. Syntax (compilation error)

34

2. Logical error

3. Runtime (execution error)

Syntax Error (Compilation Error)

We defined syntax earlier as what constitutes a program statement. To have a valid

program statement, one must adhere to the syntax rules for creating that statement.

Going against such a rule would result in a syntax error. Examples of syntax errors

include misspelling the names of Dart’s keywords or type names like int, double, String,

Map, etc. They’re also called compilation errors, because they prevent your code from

compiling at all.

Screenshot 3.6

The editor always draws your attention to syntax errors by underlining the particular

piece of code with a red squiggly line. When you hover over the red line with the mouse

pointer, Dart tells you what is probably causing the error, which could be really helpful in

resolving the error. As an exercise, try resolve the syntax errors in the program above.

Logical Error

Logical errors are the kind of errors that arise from improperly formed program logic. A

logical error can be made when doing comparisons of values, using any of the

comparison operators. We would see examples of some logical errors when we’ve

learnt about how values can be compared using the comparison operators in chapter 4.

But before that, let me paint a scenario for you.

Imagine you were to build a mobile application that would be used to collect the

details of those attending a party. This party is open to only those whose age is greater

35

than 18. So in the application, you could write some code that checks the age of each

attendee, when it’s entered into the application. So such a code would check if the

attendees’ age is greater than 18, not equal to 18 or less than 18. A possible error

would be writing the code, to check if the age of an attendee is greater than or equal to

18, meaning that all those who are currently 18 years of age and older can attend the

party. Which is not what the application should do. This is one simple example of a

logical error.

Logical errors are the most difficult to catch and fix, because they do not prevent

your code from executing, instead your code executes, but doesn’t do what you want it

to do.

Runtime Error (Execution Error)

Runtime errors are referred to as execution errors, because they are errors that occur at

runtime – while the program is executing. A good example of what could cause a

runtime error is making use of a variable that has not been assigned a value. Although

you haven’t yet seen how to perform arithmetic operations in Dart, the program below

makes use of the addition operator. It attempts to add the values of two integer

variables together, while one was assigned a value, the other wasn’t.

36

Screenshot 3.7

In the program above, the variable a, was assigned the value 10, while the variable b,

wasn’t assigned any value. The program compiles successfully, but fails to execute,

because Dart cannot do the addition operation, due to the fact that the variable b

contains no number. This results in a runtime error, causing the program to crash and

stop executing. Dart however tries to help us resolve the error with the message which

is displayed in red color in the console view. The message tries to describe the error,

and most times, provides a link to the part of the code where the error occurred, and

even the statement line. In this case, it was line 4, position 11.

Summary

In this chapter, you learnt about the usefulness of comments, the keywords that are

used in the Dart language, what errors are and how to remedy them when they

37

accidentally manifest in your program. As I mentioned earlier, it is a very good practice

to include comments in your code, in a very small program, it may not be so important,

but as your program or application code gets larger, it becomes necessary to add

comments to the part of your code where the meaning is not so obvious.

 As your program gets larger, it becomes almost impossible to avoid errors,

especially logical and runtime errors. Dart always tries to help you by showing the cause

of the error in the console view, often times it tells you of the line number and it even

provides a link to the exact part of your code where the error originated from.

Endeavour to read the error message diligently, so as to gain a good insight on what

might be causing the error, and how to fix it.

38

CHAPTER 4

OPERATORS

Dart has three major set of operators which can be used for arithmetic, relational and

logical operations. Some of these operators share same symbols with those used in the

real world, like the arithmetic operators, etc. while others don’t. In this chapter, we shall

explore how these operators are used in the Dart programming language.

Types of Operators

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

Arithmetic Operators

Arithmetic operators include the addition (+), subtraction (-), multiplication (*), division

(/), integer division (~/) and modulus (%). These are the more commonly used arithmetic

operators in Dart.

Addition Operator (+)

The addition operator can be used in performing addition operations, just as is done in

arithmetic. It’s a binary operator, because it requires two operands. It adds the operand

at its right to the operand at its left.

Screenshot 4.1

39

Subtraction operator (-)

The subtraction operator can be used in obtaining the difference between two numbers.

It’s also a binary operator, because it requires two operands. It subtracts the operand at

its right from the operand at its left.

Screenshot 4.3

Multiplication Operator (*)

The multiplication operator in Dart is represented using asterisk (*). It multiplies two

numbers and yields their product.

Screenshot 4.4

40

Division Operator (/)

The division operator in Dart is represented using forward slash (/). It divides two

numbers and yields their quotient. Please pay close attention to the program shown

below, it introduces a new way variables can be declared, it also uses string

interpolation, which you learnt about earlier.

Screenshot 4.5

Observe how the firstNumber and secondNumber variables were declared on line 2.

They were both declared on the same line to be of type int. This style of declaration is

useful when you want to declare multiple variables that are of the same type.

 One thing to note about division operations in Dart, is that a division operation

always results in a decimal value. Which is why the result variable which stores the

result from dividing firstNumber with secondNumber was declared to be of type double.

Modulus Operator (%)

The modulus operator, also called the remainder operator, because it divides two

numbers but doesn’t return their quotient, instead it returns the remainder of the

division, which is always an integer value.

41

Screenshot 4.6

The remainder from a division is always a whole number, which is why remainder had to

be declared as an int variable, since it would hold an integer value.

Integer Division (~/)

This is an operator that is specific to the Dart language, you may not find it as one of the

usual arithmetic operators. What it does is to divide two numbers and return only the

integer part of the result. It truncates i.e. removes the fractional part.

42

Screenshot 4.7

Observe the difference between the integer division operator and the normal division

operator. The integer division returns a quotient with the decimal part (if any) removed,

while the normal division operator retains the decimal part.

More Complex Operations

Arithmetic operations do not always involve only one operator and two operands.

Sometimes, they are usually more complex, containing multiple operands and operators

and even parenthesis (which are used to remove ambiguity). Let’s look at a program

that deals with a little more complex arithmetic expression.

43

Screenshot 4.8

When Dart encounters such a complex expression as the one in the program above, it

tries to resolve it, based on operator precedence. In which case the multiplication and

division operators have a higher precedence than the addition and subtraction

operators. So starting from the right, it evaluates the expression and does multiplication

or division first, depends on which it encounters first. When all the multiplication and

division operations are attended to, before addition and subtraction. This rule is required

to remove ambiguity in arithmetic expressions. However, brackets can be used to

increase the precedence of any of the operators, as shown below.

Screenshot 4.9

44

The result of the previous expression was 8.0, but when the addition operation is

performed first, through the use of brackets, we get a different result of 10.0.

Arithmetic Assignment Operators

The arithmetic operators we just looked at, can be combined with the assignment

operator (=) to perform an arithmetic operation and an assignment at the same time.

Here’s a list of the more commonly used arithmetic assignment operators.

Assuming the variable a holds the value 2.

Operator Operation Equivalent
Operation

Result

+= (Addition
Assignment)

a += 2 a = a + 2 a becomes 4

-= (Subtraction
Assignment)

a -= 2 a = a - 2 a becomes 0

*= (Multiplication
Assignment)

a *= 2 a = a * 2 a becomes 4

/= (Division
Assignment)

a /= 2 a = a / 2 a becomes 1.0

%= (Modulus
Assignment)

a %= 2 a = a % 2 a becomes 0

~/= (Integer
Division
Assignment)

a ~/= 2 a = a ~/ 2 a becomes 1

Of more interest is the addition assignment operator. Remember that the plus (+)

operator is also used for achieving string concatenation. The addition assignment

operator can as well be used in manipulating strings. It can be used to build a long

string incrementally. Take a look at the example below.

45

Screenshot 4.10

When the addition assignment operator is applied to a String value, it performs string

concatenation and not addition. The new String is added to the old String and a new

String value is created from it and assigned to the String variable, in this case

personalInfo.

Before taking a look at the Relational Operators, let’s write a fun program that does

time conversion. With your knowledge of arithmetic operations, the program should be

easy to comprehend.

46

Screenshot 4.11

8000 seconds equal 2 hours, 13 minutes, and 20 seconds. Feel free to test the program

with other seconds’ values.

Relational Operators

Relational operators are used for comparison. A value is either greater than, less than,

equal to, or not equal to other another value, etc. Dart has some special operators

which it uses to perform these comparisons and they’re collectively referred to as the

relational operators. The relational operators are represented using the following

symbols:

1. Less than (<)

2. Greater than (>)

3. Equal to (==)

4. Less than or equal to (<=)

5. Greater than or equal to (>=)

6. Not equal to (!=)

47

The equal to operator is represented using two equality signs, not to be confused with

the assignment operator (=) which is the single equality sign.

One thing to note about expressions involving relational operators is that they result in

the Boolean values of true or false. Let’s write a program that shows how these

operators can be used.

Screenshot 4.12

In the above program, we see how the result of a relational expression ends up being

either true or false. Here, we’re simply printing out the result, which doesn’t really show

their usefulness. Relational operators are better used in constructing tests or conditions

in control flow statements, which we shall look at in chapter 6.

48

Logical Operators

The logical operators are used in conjunction with the relational operators to develop

more complex expressions, they also result in either true/false. They include:

1. AND (&&)

2. OR (||)

3. NOT (!)

To better understand how these operators work, let’s view them on a table.

AND (&&) Operator

Expression Operator Expression Result

True && true true

True && false false

False && true false

False && false false

For an expression involving the AND (&&) operator to be true, the expressions at the

right and at the left must be true. For any other case, it evaluates to false. Let’s write a

program that uses the && operator.

Screenshot 4.13

Endeavour to try out the other cases for the && operator.

49

OR (||) Operator

The OR operator is represented using the pipe (|) sign on the keyboard. The one on the

same key with the backward slash (\).

Expression Operator Expression Result

true || true true

true || false true

false || true true

false || false false

An expression involving the OR (||) operator is only false, when the expressions at the

right and the left are both false. In any other case, it evaluates to true.

Screenshot 4.14

NOT (!) Operator

The NOT (!) operator works in a rather odd way, it negates the result of a relational or

logical expression, just as shown in the example below.

50

Screenshot 4.15

On a normal day, testing if 5 is equal to 5 (5 == 5) would result to true, same with how
testing (6 <= 8 || 1 != 1) would result to false, but with the magic of the NOT (!) operator,
we’re able to change the results of such expressions.

Summary

In this chapter, you learnt about the different operators used in the Dart language. It

would be impossible to write sophisticated programs or programs that do amazing

things without the use of operators. They provide a way of adding logic and complexity

to programs. Endeavour to learn and master the symbols for representing each.

Practice by forming simple expressions, then proceed to more complex expressions.

Exercises

1. Which symbol best describes the greater than or equal-to operator?

a. ->

b. greaterThanOrEqualTo

c. =>

d. >=

2. Which symbol best describes the not equal-to operator?

a. ~=

b. ^=

c. #=

51

d. !=

1. Which symbol best describes the less than or equal-to operator?

a. <-

b. lessThanOrEqualTo

c. =<

d. <=

2. Evaluate each of the following logical expressions

a. 5 == 6 || 6 == 5

b. 7 < 8 || 4 != 4

c. 0 <= 1 || 10 > 20

d. 7 > 1 && 8 > 2

e. !(9 > 9 && 10 != 10)

52

CHAPTER 5

FUNCTIONS

In this chapter, we shall explore all about functions, what they are, the types of

functions, and how they can be used.

What is a Function?

A function is a group or set of program statements that can be executed as a whole, to

achieve a particular result. The major importance of functions is that they help us write

reusable code and they provide structure for our programs. Let’s take a look at a simple

analogy. When you want to make a cup of tea, you’re required to go through some

certain steps:

Step 1:

Using a kettle, put water on the fire.

Step 2:

Add some quantity of Milo and Milk into a tea cup.

Step 3:

When the water is warm, pour some of it into the tea cup.

Step 4:

Stir for a little while.

With that, you have a cup of tea ready for your enjoyment. If for example you want to

take tea every morning, throughout the week, you would have to go through these steps

daily.

 In programming, these different steps map to program statements. You could

write a function that contains all the statements required to do a particular thing, and

whenever you need to do that thing, all you have to do is call the function using its

name.

Types of Functions

There are basically two types of functions in Dart.

1. Named functions and

2. Anonymous functions (Nameless functions)

Named Functions

Named functions are functions that have a name and can be called with that name.

Using the analogy I cited earlier, if you write a function that makes a cup of tea, you

53

could call the function makeTea. Then whenever you want to make a cup of tea, all you

have to do is call makeTea. Observe how makeTea is spelt, it is an identifier (a word I

came up with), so it follows the same principles as naming identifiers, i.e. using lower

camel case. With all that explained, let’s see our first example on how a named function

is created. Although, just before that, you should know that right from the beginning,

we’ve been making use of a named function, i.e. the main function, which has been

present in all the programs we’ve written thus far. The main function should always be

present in every program you write, because it is the starting point for all programs, it is

the first function that gets executed when a program runs, hence it always has to be

present.

 Think of it this way, imagine we defined so many different functions in a program,

which of those functions should get executed first? The only way to execute all the

functions, is to give priority to one, as being the first to execute, so that from within the

first function, different calls can be made to the other functions so that they can be

execute.

Screenshot 5.1

In the program above, there are two functions. One is the main function, while the other

is the printName function. As you can see, the two functions have a similar structure, so

let’s expose their different parts. We will use the printName function for our explanation.

Starting from the left, we have the keyword void, this is the return type of the function

(more on this later). Next, we have the name of the function, in this case, the function is

54

called printName. Next is the opening and closing parenthesis, followed by an opening

brace, then we have a print statement. Finally, a closing brace. The opening and closing

braces are what marks the body of the function. That’s why the statement which should

execute is placed inside of them. When the printName function is called, it is the

statement that is in its body that would get executed. Here’s the general syntax for

defining a named function:

 Return type functionName() {

 Statement 1;

 Statement 2;

 …

 Statement n;

 }

After a function is defined, in order for the function to run (execute), the function has to

be called. That is where the main function comes in. From within the main function, we

call the printName function. This causes the printName function to execute the

statement it has in its body. That is why Moses Adebayo is shown in the console view

 A good question one could ask is: If for the printName function to get executed, it

has to be called from within the main function, what then calls the main function? The

main function is called by Dart, which is why the main function is referred to as the

starting point of program execution. It is the first function that executes when your

program starts up.

Returning Values from a Function

When we discussed the printName function, I mentioned that void is its return type.

When functions are declared, they are usually given a return type, the return type

signifies what kind of value the function would return back to the caller, when it is called.

In the case of printName, it returns no value, because it simply prints out some

text to the console. If a function doesn’t return any value, it is given a return type of

void, just as we have it for the main and printName functions. However, when a

function has to return a value of a particular type, it needs to have a return type. A good

example is a function that adds two numbers together, after adding the numbers, it

returns the sum of the numbers to the caller. In such a case, the function should have a

return type of int or double, depending if it was integer or decimal values that were

summed and would be returned. Let’s look at some examples on how to define

functions that return values to their caller.

55

Screenshot 5.2

The addNumbers function in the program above has a return type of int. On line 10, you

can see the plus (+) operator is used to add the values of firstNumber and

secondNumber. So, 20 is added to 10, and the result is assigned to the sum variable.

Observe that the sum variable had to be declared using type int. This is because

firstNumber and secondNumber both hold integer values. So, adding them together

would in turn yield an integer value. So the variable sum which holds the resulting value,

has to be of type int.

 Finally, on line 11, we get to return the result of the operation. return is a

keyword. It is used when a value needs to be returned from a function. It has to be the

last statement in the function, because it also causes the function to stop running, and

to transfer execution to the calling function. You shouldn’t place any code

statement(s) after the return statement in a function, for the code would be

unreachable and won’t be executed.

 Since the addNumbers function is called from within the main function, the value

it returns gets received in the main function, i.e. on line 2, and it is assigned to the result

variable, which is then printed to the console. Again, observe that the result variable had

to be declared using type int. This is because the value that addNumbers returns, is of

type int, as specified by its return type.

56

 We aren’t limited to defining functions that have a return type of int.

Functions can have any return type (String, bool, List, Map, etc.). So, let’s define a

function that returns a String value.

Screenshot 5.3

Defining a function that returns a String, is just as similar to defining a function that

returns a value of another type. One part of the code I want to draw your attention to, is

how the return statement was used on line 9. Observe how both String variables were

included in the returned String value, using string interpolation. Another way it could

have been done, would have been to concatenate firstName with secondName, then

put the resulting String value in another variable, which would then be returned.

Parameters

Sometimes, when a function is defined, it requires some extra data that it needs for its

internal operations. That is what parameters basically are; data that a function uses

when executing. The question now is, where are parameters placed in a function? Let’s

extend the general structure for defining a function, with parameters included in it.

57

Return type functionName (Type param 1, Type param 2, … Type param n) {

 Statement 1;

 Statement 2;

 …

 Statement n;

 }

Parameters are basically variables, they’re defined in the parenthesis just after the

name of the function. Parameters make functions more powerful and flexible. With

parameters, functions are able to receive any valid data, which they use for their internal

operations.

Types of Parameters

There are two types of parameters in Dart and they are:

1. Required Parameters

2. Optional Parameters

Required Parameters

Just as the name implies, they are parameters (variables) that must be given values

whenever a function is called. It would be an error to call a function that defines required

parameters, without passing correct values (arguments) to it. Let’s modify the

addNumbers function we wrote earlier, to include parameters.

Terminology Note: Arguments are values passed to a function when it is called.

58

Screenshot 5.4

The addNumbers function in the code sample above, performs the same operation as

the previous one, but it is more flexible in how it can be used. Observe that after the

function’s name, in the parenthesis, two variables are defined, although they aren’t

assigned any values. Those two variables (value1 and value2) are the parameters of

the addNumbers function. When the addNumbers function is called, like it is done from

within the main function, it has to be passed two integer values (arguments). In this

case, we passed 10 and 20. The values passed to it are eventually assigned to the

value1 and value2 variables. That is why within the function, we are able to assign

value1 and value2 to firstNumber and secondNumber respectively.

 If you call the addNumbers function without passing the required arguments,

you’ll get an error that “the function defines two parameters that need to be passed

values”.

Let’s see another example of a function that defines String parameters, which is

just a modification of the example we looked at before.

59

Screenshot 5.5

One other thing to note about required parameters is that, when a function that defines

required parameters is called, the arguments passed to the function must be passed in

the exact order which the parameters are defined. Take the getName function in the

program above, if you flip the order of the arguments from getName(‘Mary, ‘Eke) to

getName(‘Eke, ‘Mary), then ‘Eke would be assigned to the value1 parameter, while

‘Mary would be assigned to the value2 parameter. That’s how it works. So always make

sure that for required parameters you pass the arguments in the exact order that the

parameters were defined, having the type of each parameter in mind. If not, you might

get unexpected results. As an exercise, try change the order of the names we passed to

the getName function in the program above. That would cause the order of the names

to change when they’re printed to the console.

The program below shows how parameters of different types can be defined for a

function.

60

Screenshot 5.6

Optional Parameters

Optional parameters are true to their name. When a function uses optional parameters,

it means that the function can be called with or without arguments. Optional parameters

are broken down into two:

1. Optional Named Parameters and

2. Optional Positional Parameters

To better understand the difference between the two, let’s see examples on how they

are used, starting with optional named parameters.

61

Screenshot 5.6

The printAgeAndName function defines an optional named parameter. Observe the

braces that are used in wrapping the age parameter. It is the braces that make it

optional and named. It is referred to as named, because, when the function is called,

the name of the parameter must be specified. Just as it is done on line 2 of the program.

The name of the parameter, followed by a column, then the value that is to be passed to

the parameter. If there is more than one parameter, then they’re separated by a comma,

as shown in the example below.

Screenshot 5.7

62

Here, we’ve defined two optional named parameters (name and age). When the

function is called, the names of the parameters have to be specified and the appropriate

values passed to them. Values for named parameters can be passed in any order,

unlike for required parameters that we looked at earlier. Try calling the

printAgeAndName function and pass the arguments in any order, using the name of the

parameters, you would get the same result. This is possible, because Dart is able to

match each value that is provided when the function is called, to the parameter, using

its name.

 We’ve seen how optional named parameters can be defined, which only boils

down to wrapping the parameter(s) with curly brackets and using the name(s) to pass

values when the function is called.

Remember that they are also referred to as optional. So, the question is, Can

we call a function that defines optional named parameters without actually passing any

or all of the arguments to it? The answer is yes. Let’s test that out.

Screenshot 5.8

Here, the printAgeAndName function is called without any arguments. This is only

possible because name and age are optional named parameters in the

printAgeAndName function. What is printed to the console is a confirmation that no

argument(s) were passed when the function was called. My name is null, I am null years

old. Remember that when a variable is not assigned any value, it retains the default

value null.

 Next, let’s look at an example on how optional positional parameters are defined.

63

Screenshot 5.9

Observe the syntax for defining optional positional parameters. In contrast to optional

named parameters, it uses square brackets in wrapping the parameters. Also, observe

how the arguments are passed when the function is called, the names of the

parameters aren’t used.

For optional positional parameters, it is also possible to call the function without

passing any arguments. If you were to do such in this program, you would get the same

result of null for the name and age parameters.

 We’ve learnt about parameter definition and argument passing for functions.

We’ve looked at the different ways these parameters can be defined and how

arguments can be passed. You may be wondering why there are so many options for

defining parameters and passing arguments. Isn’t one method enough? Well, it is true

that your programs won’t require all the different methods at a time. There are times

when a particular method is more appropriate or useful than the other. You’re going to

have to always pick the one that best fits your program. Take for example, you have a

function that defines up to 5 or 6 parameters. You may want to use optional named

parameters in that case, because it would make it easy for you to be able to provide the

arguments without having them mixed up. With the IntelliJ IDEA Editor running on a

windows machine, when you call a function that defines optional named parameters,

you can place the cursor in between the parenthesis of the function call, and press ctrl

+ space. Doing so will bring up a list of the parameters that are defined in the function.

Lexical Scope

Lexical scope or scope for short, refers to visibility. Dart is a lexically scoped language.

What that means is that, you can basically know the beginning and end of a program

64

block (a function for example) by their opening and closing braces. A function’s body

begins with an opening brace and ends with a closing brace. Everything within the body

of a function can be said to be within the scope of the function.

Imagine there are two boxes, a bigger box and a smaller box. The bigger box

encloses the smaller box. In the bigger box, there are some items, also the smaller box

contains some items. However, there is a strict rule that no item in the smaller box can

be taken out of it and used in the bigger box, but items in the bigger box can be taken

and used in the smaller box. All the things in the smaller box are within the scope of it,

but those things aren’t visible in the larger box. While the things in the bigger box are

within its scope as well but are visible to the smaller box, because the smaller box is

kind of like in the scope of the larger box as well.

That is what lexical scope is like in Dart, it is all about visibility, visibility and

visibility. What is visible to what, where can what be accessed and where can’t it be

accessed. Let’s write a program to see lexical scope in play.

65

Screenshot 5.10

In the above program, you can see how the different variables are being accessed. Only

the variable(s) within a function’s scope can be accessed from within it. On your own,

try to print out the secondVariable or assign a new value to it from within the main

function. You would get an error that the variable is not defined, because the

secondVariable is only visible in the innerFunction. Observe that innerFunction was

called on line 18 after its definition inside main. This is because, we cannot call a

function before it is defined. To place a call to innerFunction before its definition would

result in an error, due to the fact that Dart executes the program from top to bottom.

If you’re ever in doubt about the scope of a function, suppose you want to know

where it begins and ends, you can simply place the cursor at the opening brace and it

would highlight the closing brace for you, as shown in the screenshot below. Let’s use

the cursor to find out where innerFunction begins and ends.

Screenshot 5.11

When the cursor is placed at the opening brace of the function, the closing brace is

highlighted along with it. This is just one of the ways the Intellij IDEA code editor helps

us to easily find our way in such a program that contains nested blocks of code.

66

Anonymous Functions (Nameless Functions)

An anonymous function is a function without a name. One of the ways an anonymous

function can be used is passing it as a value to a variable. An example is shown below.

Screenshot 5.12

Notice that the function after the equals sign has no name. It is an anonymous function.

One easy way to understand how passing an anonymous function to a variable works,

is to reason the variable name as becoming the name of the anonymous function. So

that when the function that is saved in the variable is to be used (called), one simply

need add a pair of parenthesis to the name of the variable, as was done on line 5.

If the anonymous function defines any parameters, then the right arguments

have to be passed. We can also write anonymous functions that don’t define any

parameters. An example of this is shown below.

67

Screenshot 5.13

One major thing to observe in the program above is the type of the printSomeText

variable. It is declared using the special type Function. That is because the type of a

function is Function. So, since an anonymous function would be assigned to the

printSomeText variable, it can be declared using the Function type, which visibly, is

more precise than using the var keyword, as was done in the previous example.

In a later chapter, we shall look at how an anonymous function can be passed as

an argument to a function.

Summary

In this chapter, you’ve learned much about writing functions in Dart. Functions are very

essential in programming, as they allow us write reusable code, which can come in very

handy. Parameters are used to make a function flexible. With different inputs, the

function is able to produce different results based on the input. In a function that returns

a value, remember to not place any statements after return is used.

Exercises

1. Write a function that defines three int parameters (required), it adds their values

together and then prints the sum when the function is called.

2. Write a function that defines two String parameters (required), it concatenates

the values of the parameters and returns the resulting String value.

3. Rewrite the functions you wrote for questions 1 & 2, using optional named

parameters

68

4. Rewrite the functions you wrote for questions 1 & 2, using optional positional

parameters.

69

CHAPTER 6

CONTROL FLOW STATEMENTS

So far, we’ve only seen how to write code that gets executed sequentially i.e. from top

to bottom. In this chapter, we shall learn how to write code that doesn’t necessary get

executed from top to bottom, in a sequential order. Such code usually entails multiple

code paths in which the decision on which code should be executed is made based on

some condition. A decision is made on whether to deviate from the current path of

execution and move to a different path, or to skip an entire block of code, or to repeat

the execution of a piece of code for a certain number of times.

Control flow statements can be grouped into three major categories:

3. Selection Statements

4. Iteration/Repetition Statements

5. Jump Statements

Selection Statements

Selection statements are all about making decisions. With selection statements, we’re

able to write code that tells Dart to make a decision between two or more code paths,

which to execute, based on some condition or test. The selection statements include:

3. If, else and else if statements

4. Switch statement

If and else statement

The if and else statement has the following general structure;

 if (condition) {

 Statement 1;

 Statement 2;

 …..

 Statement n;

 }

The if statement begins with the Dart keyword, if. Which is then followed by a pair of

parenthesis. Inside the parenthesis goes the condition. The condition could be either a

bool value of true/false or an expression that evaluates to a bool value of true/false. If

the condition is true, then the code block immediately following the condition would be

70

branched into and the statement(s) executed, while if the condition is false, then nothing

happens.

Screenshot 6.1

This is a simple weather program. The program’s structure makes it very self-

explanatory. The isRaining variable is a bool variable, meaning it can hold either true or

false, i.e. if it is raining or not. The if statement simply acts based on the value of

isRaining. If isRaining is true, then Dart would have to execute the block of code that

comes immediately after the condition, which simply prints out Please come with an

Umbrella. as shown in the console. After the printing is done, the program would stop

executing. How about the case of when isRaining is false. What would happen? Well, I

am sure you guessed it, nothing would get printed.

Screenshot 6.2

71

As you can see, when isRaining is false, nothing gets printed, because when Dart

checks the value of isRaining, it finds that it is false, so it doesn’t executed what is in the

if block.

 In order to tell Dart what should be done when the condition in the if statement is

false, we introduce the else statement, which provides an alternative block of code that

should be executed when the if condition is false. Adding the else statement to the

general structure of the if statement above, gives:

if (condition) {

 Statement 1;

 Statement 2;

 …..

 Statement n;

 } else {

 Statement 1;

 Statement 2;

 …..

 Statement n;

 }

Screenshot 6.3

Unlike the previous code, something now happens when the if condition is false.

72

There are also times when just having two code paths is not enough, you may want to

define multiple code paths, where only the one that matches a condition is executed.

We can extend the if statement to accommodate as many code paths as required

through the use of the else if statement. Adding the else if statement to the general

structure of the if statement gives:

if (condition) {

 Statement 1;

 Statement 2;

 …..

 Statement n;

 }

 else if (condition) {

 Statement 1;

 Statement 2;

 ….

 Statement n;

 } else {

 Statement 1;

 Statement 2;

 …..

 Statement n;

 }

73

Screenshot 6.4

The example uses the else if to include multiple conditions for the if statement.

Although, no matter how many conditions are present, only the block of code for the one

that is true would get executed. When all the conditions are false, then the code in the

else block would get executed. The next example shows how you can define conditions

with more complex boolean expressions.

74

Screenshot 6.3

The condition of the if statement or else if statement can be any valid boolean

expression. Notice that there’s no else block. The else block, just like the else if block

is also optional.

Switch Statement

With the else if, it is possible to include multiple conditions for the if statement, however

when there are too many else if statements, the program may become verbose and

inelegant. The solution to this is the switch statement, which provides a more elegant

way of performing multiple code checks or tests.

 The switch statement entails testing the value of a variable, to see if it matches a

particular case.

75

Screenshot 6.4

Here’s the output:

Screenshot 6.5

In the program, the string variable day is assigned the string value “Monday”, then the

variable is matched against several cases inside the switch statement, if it matches any

of the cases, then the statement(s) tied to that case would be executed.

76

 The break statement is used to specify the end of each case statement. The

default statement is only executed when the value doesn’t match any case. Take this

program for example.

Screenshot 6.6

This switch statement in this program, as opposed to the previous one, matches the

value of an int variable against the defined case values. The allowed types for a switch

statement are String, int and enumerated types (more on this later).

 Notice that the default statement is executed, this is due to the fact that the value

being switched on doesn’t match any of the defined cases. Also, observe that no break

statement is provided after the default statement, this is because the default statement

77

usually marks the end of the switch statement, meaning there can be no other case

statement(s) coming after it.

 Bear in mind that case statements are not limited to just print statements, they

could be any kind of statement, or valid expressions, including function calls, etc.

Conditional Expression

The most common conditional expression is the one that uses the ternary operator. It

has the following syntax:

 Condition ? expression one : expression two;

The condition is usually an expression that evaluates to a bool value of true/false.

Expression one represents the code statement that would get executed if the condition

is true, while expression two is the code that would get executed if the condition is

false.

 This conditional expression can be used for situations that involve only two code

paths, compared to the other selection statements that we’ve looked at, which can

accommodate as many code paths as needed. Let’s see an example program on how

this conditional expression can be used. In order to do this, first we would write a

program that uses an if statement for selecting between two code paths. Then we

would write an equivalent program that uses this conditional expression to solve a

similar problem.

Screenshot 6.7

78

An equivalent of the above program written using the conditional expression.

Screenshot 6.8

Notice that the semicolon which terminates a statement is added after the second print

statement, which signifies that using the ternary operator creates a single statement.

One advantage of using this conditional expression is that it is more concise. Also, just

as I pointed out for the switch statement, this conditional expression can be used to

execute other statements other than print statements, like function calls, etc.

Repetition Statements

Assuming you wanted to execute a program statement more than once, e.g. printing

some text to the console for n number of times. To make that happen, one would have

to write several print statements, which could get really tiring and seem unprofessional.

79

Screenshot 6.9

It is to avoid writing such code as this, that the repetition structures were made.

Repetition statements are true to their name, they’re used to repeatedly execute a

statement or a particular block of code. The more commonly used ones are:

1. for loop

2. while loop

3. do while loop

80

for loop

The for loop has the following syntax:

 for (initialization; condition; increment/decrement) {

 statement 1;

 statement 2;

 …

 Statement n;

 }

The initialization part is where the loop counter is initialized, the loop counter is a

variable helps to keep track of how many times the loop has run, i.e. how many times

the statement(s) has been executed.

The condition part is where the loop condition is specified, the loop will continue

to run, for as long as the condition remains true. The loop condition is usually any valid

bool expression that evaluates to true or false.

Lastly is the increment/decrement part. This part is where the loop counter gets

increased or decreased, so as to keep track of how many times the loop has run and

eventually cause the loop to end, when the condition becomes false. With all of that

explained, let’s rewrite the program above, in a better and more professional way, using

the for loop.

81

Screenshot 6.10

Just like magic, a single print statement is able to print text to the console ten (10)

times. Well, there isn’t any abracadabra going on here, it’s all being done with the aid of

the for loop. That’s how powerful loops are and how much they can help us achieve.

Let’s dissect the program, so we get the full picture of how the program uses the for

loop to perform the task.

 As was shown in the for loop syntax above, the first part is the initialization part,

in this case, the int i = 1. This is the same variable declaration and initialization that

we’ve done thus far. We’re simply telling Dart that the variable i should be used as the

loop’s counter (to keep track of how many times the loop has run). Next is the condition

part. In our program, the condition is i <= 10. What that means is that, the loop should

run for as long as the variable i is less than or equal to 10, meaning the loop should

stop running when i becomes greater than 10. When that happens, the expression

would evaluate to false, and the loop would cease to run. Lastly, is the

increment/decrement part. Although, in our program, we’re doing an increment of the

value stored in i, we’ll see how to do a decrement soon. Whenever the loop runs, the

value stored in i is increased by one (1). This is done with the i++. i++ translates to i = i

+ 1. So the i++ in the code above could be swapped with i = i + 1, and it would produce

82

the same output. One is only a shorter form of the other. The i = i + 1 can also be

expressed in another form, i += 1, just as you learnt in chapter 4, where we looked at

operators.

For loops are commonly used when dealing with a list of items. Our next example

showcases that.

Screenshot 6.11

Remember what I told you about lists using zero-based index in chapter 2. That idea

comes to play here. The program above uses the loop counter as the index to

individually retrieve items from the list and then prints them to the console. Based on the

fact that the loop counter is increased by 1, each time the loop runs, it keeps increasing,

until it becomes greater than 10, at which point the condition of the loop becomes false,

causing the loop to terminate.

 The index of the items in the numbers list begins at zero (0) and ends at nine (9),

which is why the condition is i < 10. An alternative is to check for i <= 9, that would also

work fine for the number of items in the numbers list. You should know that an attempt

to access an item, using an index that is not within the range of the current list’s indices

would result in an error, so always ensure that you only access items in a list using valid

indices.

83

 An obvious limitation to the way we structure the loop condition in the program

above is that we’re hardcoding the number of items that are present in the list. While

this may not be a problem in a list containing such few items, it could be a serious

problem when we’re faced with a list of which we do not know its exact length. It is for

this reason that Dart provides the length property for a list. The length property always

contains the number of items in a list. It is accessed with the .length syntax. Simply

attach .length to a list, to determine the number of items in the list.

Screenshot 6.12

The program above adds 2 to each number in the list, just before it gets printed out. It

uses the length property of the list, to determine the number of items the list contains.

This is a more convenient way of writing for loops that go through the items in a list. We

shall adopt this method of writing for loops and use it hence forth.

 A String as defined in chapter two, is an array of characters. An array is another

name for a list in Dart. This means that we can write a for loop that loops through all the

characters in a String.

84

Screenshot 6.13

From the above program, it is clear that a string value is itself an array (list of

characters). We could choose to just retrieve the first or any character in a String. For

the string above, we can get any character in it using name[index]. One other thing to

observe in the code, is how the loop counter is initialized to the number of characters in

name, using the length property. Subtracting one (1) from it ensures that the value of i,

isn’t greater than the index of the last character in name. Also, notice that we’re

decreasing the value of i, as opposed to what was done in the previous loop programs,

where we increased it. Due to this decrement, the string value ‘Precious’, is outputted in

the reverse order, because the loop prints out the characters, starting from the last

index.

while loop

A while loop, just like a for loop is also used for iteration, but for a certain kind of

iteration. while loops are best for iterating through items whose length is unknown.

Assuming we had a directory that contains a lot of files, or a book whose text characters

needed to be counted, then a while loop would be a good choice for such operations.

However, let’s look at a simple program on how to use the while loop.

85

Screenshot 6.14

The while loop’s structure is a bit different from that of the for loop. However, the

comprising parts are the same. Observe that the counter variable for the loop is defined

outside of its body, and it is incremented from within the loop’s body.

 In the program above, there’s a comment stating that incrementing the loop

counter must be done, so as to prevent the loop from running indefinitely. An indefinite

loop is a loop that runs without end. To intentionally create an indefinite loop, try

removing the counter++ inside the loop’s body. Doing that would cause the loop to run

forever, printing just maggi, which is the first element in the list. This is because the

loop counter was initialized to zero (0) and it never increases, so it only accesses the

first element in the list, using the zero (0) index. In the IntelliJ IDEA code editor, you can

stop a running program by clicking on the red stop icon, on the same area as the play

icon which runs a program.

86

 As a warning, endeavor to always to structure your loop condition, that it always

becomes false at some point, so as to avoid creating an infinite loop.

do while loop

The do while loop is similar to the while loop, except for the fact that the statement(s) to

be executed are executed at least once, not minding if the loop condition is true or false.

This is because the body of the loop is encountered before the condition. do while loops

are useful, if you need to ensure the execution of some code, before the loop starts

running, i.e. if the loop will eventually run or not. Let’s look at a program that describes

how the do while loop works.

Screenshot 6.15

Even though the condition for the loop is false, the statement inside the body of the

loop, is executed at least once. The loop doesn’t perform any iterations.

87

As an exercise, refactor the condition of the loop, so it performs its iterations and

stops when all the items in the list have been printed.

Jump Statements

The jump statements are primary used in a loop’s body, they’re used to conditionally

alter the flow of the loop, or to halt its execution. They include:

1. break

2. continue

break

You’ve already seen how to use the break statement when we looked at the switch

statement in chapter 5. The effect of the break statement when used in a loop is the

same, i.e. causing it to end abruptly.

88

Screenshot 6.16

The loop runs until the loop counter (i) is equal to 3, at which point it stops running. With

the if statement, we ensure that the break statement isn’t encountered in the loop’s

other iterations, rather, at its 4th iteration, when the counter is equal to 3. As a result,

only the last two items (‘E’ and ‘F’) are not printed.

continue

The continue statement is true to its name. When it’s used, the loop skips its current

iteration and continues to the next iteration. If some statements occur before and after

the continue statement in a loop, only the statements that occur before the continue

statement would be executed, while the ones that occur after the continue statement

would be skipped.

Let’s rewrite the previous example to use a continue statement.

89

Screenshot 6.17

The loop experiences a normal execution, until its counter (i) becomes 3, at which point

the condition of the if statement becomes true and the loop is forced to print out i is now

4, then it skips the remaining statement, which is printing out the item at that particular

index, in this case ‘D’.

90

CHAPTER 7

OBJECT ORIENTED PROGRAMMING

Just like most modern programming languages, Dart is an object oriented programming

language (OOP).

In the world of object oriented programming, everything is seen as an object. A

Car is an object, a House is an object, an animal is an object, and even a human is an

object. With object oriented programming, we’re able to model real-life objects and

create an interaction with their properties and actions. When I say properties, I mean

the different attributes that an object has, e.g. A Dog has a tail, eyes, head, etc. While

actions refer to what an object can do, e.g. a Dog can bark, run, swim, etc.

 Object oriented programming revolves around the concepts of classes and

objects. It is important to know and understand these concepts.

What is a class?

A class can be seen as a blueprint from which objects can be created. A good analogy

is a blueprint for a house, from which several houses can be made, all having the same

properties. A class encapsulates the attributes and actions of an object and is seen as

the type of the object. Defining a class is like creating your own custom type. Everything

in a class is seen as the members of the class, which includes the properties and

actions.

What is an object?

An object is what is created from a class, or using a more technical term, an object is an

instance of a class. For example, from a Dog class, several Dog objects can be

created, all of which would have the same attributes and can perform the same actions.

The example code below shows how to define a class and how to create an object from

it.

91

Screenshot 7.1

As earlier explained, a class is an encapsulation of an object’s attributes and actions,

although the class above contains only attributes, we shall see how to include actions in

a moment.

 A class is defined using the class keyword, followed by the name of the class,

then an opening and closing brace, which marks the body of the class. Inside the body

of the class is where the attributes and actions are specified. The name of a class could

be anything the programmer chooses. Class names also adhere to the same rules as

those for choosing a variable name, but they must begin with a capital letter, just like

Dog.

The attributes in a class are commonly referred to as fields or instance

variables, because they’re the variables that are tied to each instance (object) that is

created from a class. All objects created from a class, have a copy of the instance

variable(s) defined in the class. Remember that defining a class is like creating your

92

own custom type. So, in the program above, Dog is the type of all objects that are

created from it.

In the main function, we have two instances (objects) of the Dog class, dog1 and

dog2. The method of creating objects from a class is similar to how we’ve defined

normal variables in the past. First, specify the type of the object, in this case Dog, then

the name of the object, in this case dog1 or dog2, then the assignment operator (=),

lastly is the value that is being assigned to the object. This is the general syntax for

creating an object from a class.

 Just below the creation of the Dog objects, on lines 14, 15, 17 and 18, we’ve

accessed the properties of the dog1 and dog2 objects. To access the property of an

object, append a dot (.) to the name of the object. The dot (.) is how we access any

property of the object and is referred to as the member access operator. Here, we’re

assigning values to the properties (which are basically variables in defined in the Dog

class). We assigned a String and an int value to the breed and age properties of the

dog1 object respectively, while we assigned a String and bool value to the gender and

canSwim properties of the dog2 object.

 Let’s see how to include actions for objects in a class.

93

94

Screenshot 7.2

In the previous program, we saw how to define properties for objects in a class and how

to access those properties. Here, we’ve included actions. Actions are basically

functions, just as we have the bark and swim functions defined in the Dog class above.

Although, when a function is defined in a class, it is called a method, while functions

that exist outside of a class are called functions.

Remember that everything in a class is seen as a member of the class, with that

in mind, we can refer to instance variables as member variables while actions

(methods) can be referred to as member methods or instance methods. These are just

names that are given to these different class entities, so as to properly distinguish

between them.

 In the program above, we’ve defined two instance methods, bark and swim.

These two methods are accessed or called using the dog1 and dog2 objects in the main

function i.e. on lines 32 and 33. Recall that each object has its own copy of the instance

variables and methods in a class. So dog1 and dog2 can access their individual copy of

these methods, i.e. bark and swim. These two methods do nothing, other than printing

out some text, “This dog is barking” and “This dog is swimming”. A method in a class,

can be defined to do anything.

Default Values For Instance Variables

The instance variables in a class can be initialized (i.e. given default values) before

objects are created. When that is done, all the objects created from the class would

automatically have their instance variables set to those values. Here’s an example that

shows how that can be done.

95

Screenshot 7.3

In the Dog class of the program above, initial or default values have been assigned to

the instance variables, which causes any object created from the class to have its

96

variables set to those values. We’ve put this to test by first printing out the breed

property (variable) of dog1, then later changing it to another value. This would be the

same for all the other instance variables and you’re free to test it out, for the dog1 and

dog2 objects.

Constructor

We’ve seen how to access the instance variables of an object and then assign values to

them outside of a class, also we’ve seen how to assign values (default values) to

instance variable in a class. Next, let’s look at how to assign values to instance

variables when an object is being defined or created. To do this, we require a

constructor.

A constructor is a special function that exists in a class and is used in creating or

constructing objects from that class. Dart calls the constructor each time you tell it to

create an object of any class. A constructor in a class usually takes the same name as

the class.

So far we’ve only constructed objects using the default constructor, which Dart

creates internally when we define a class. Using the Dog class for example, the default

constructor has the following syntax:

97

Screenshot 7.4

As earlier mentioned, a constructor is similar to a function, except that it takes the name

of the class.

 The major reason why you should define your own constructor in a class, is so

that you’re able pass initial values to the instance variables defined in the class. That

way, you’re able to provided unique values for each object that is created using the

constructor you defined. As you would see, passing values to a constructor, is similar to

how values are passed to a function. Let’s see an example on how you can define your

own constructor.

98

Screenshot 7.5

The Dog class now has a constructor that allows the provision of values for instance

variables when objects are being created. Constructors are called just like you would

functions. When you call a constructor that defines parameters like the constructor in

the Dog class above, you’re required to provide arguments. Although, this is just one of

the ways a constructor can be defined. Let me show you another way for defining a

constructor, this new way is commonly used by most people, because it is concise and

more convenient.

99

Screenshot 7.6

Running the above code still gives us the same result as the previous one did, except

for the fact that we’ve defined a more concise constructor. Attaching the this keyword to

the name of the parameters defined for the constructor function, automatically causes

the values that are passed to the constructor, when it is called, to be assigned to the

100

instance variables defined in the class. This is a more convenient way of defining a

constructor and it’s the style we shall adopt henceforth.

 Guess what? Constructors can also use optional named parameters and optional

positional parameters, which I’m sure you recall how to define from when we first

discussed functions and parameters in chapter 5. All that is required is to wrap the

parameters in curly brackets ({}) to make them optional named parameters, or wrap

them in square brackets ([]) to make them optional positional parameters. An example

of how optional named parameters can be defined for a constructor is shown below.

Screenshot 7.6

The need for using named parameters in a constructor is the same reason as that which

was explained for normal functions. When the parameters to initialize are plenty, then

101

using named parameters is a better approach, as it makes it easy to recall the names of

the parameters that need to be initialized. As an exercise, try refactor the constructor in

the above program, to use optional positional parameters. Remember to fix the call to

the constructor function, to reflect the change.

 The constructors we’ve defined above all took the name of their class, nothing

else. However there are times that you may need to define a constructor that has

another name attached to it, along with the name of its class, this name would mean the

source of the data, which is used in creating that particular object. Let’s create such a

constructor for the Dog class defined above.

102

Screenshot 7.7

The constructor with the name Dog.fromDatabase is an example of a special kind of

constructor that gets its data from a special source. Such a source could be a database,

the internet, etc. You could have several such constructors in your programs. They only

help clarify the source of the data that is used in constructing a particular object. Here,

the constructor expects a map, when it is called. Internally, it retrieves the values from

the map and uses them to initialize the instance variables in the class, so as to create

an object.

Extending a class

Just as children inherit traits from their parents in the real world, so can classes inherit

properties and behavior from one another. This concept is referred to as inheritance,

and it is one of the major features of object oriented programming.

 When class A inherits from class B, class A is said to be the child class

(subclass) while class B is said to be the parent class (superclass). We will look at an

example on this in a moment.

So far, we’ve been writing code in a single file, the main.dart file. Usually, that is

not a problem when your code spans only a few lines. However, as your code gets

plenty, it becomes necessary to spread your code across several files, so as to keep it

clean and easy to manage. The program we shall look at next will consists of three (3)

files. One file shall contain the definition of our usual main function, while the other files

will contain class definitions.

 To create a new file, right-click on the lib folder in your project’s structure and

you would see a menu pop up as shown in the screenshot below.

103

Screenshot 7.8

In the menu that comes up afterwards, click on New, then you would get another menu,

from which you can click on Dart File, to create a new Dart file.

Screenshot 7.9

104

After clicking on Dart File, a pop up which contains an input field in which you can

specify the name of the file would show. Enter the name of the file and click on OK. This

would create a new Dart file with the name you entered. Create two files using the steps

above and name them human.dart and man.dart. The human.dart file should contain

the following class definition.

Screenshot 7.10

The man.dart file should contain the following class definition.

Screenshot 7.11

The Human class in the human.dart file acts as the superclass (parent) for the Man

class which is the subclass (child). This parent-child relationship was established using

105

the extends keyword. When a class (e.g. class A) extends another class (e.g. class B),

then class A (child class) automatically inherits all the instance variables and instance

methods that are defined in class B (parent class).

 It is the same with the Human and Man classes we’ve define above. The Man

class being a subclass of the Human class, inherits all the members (variables and

methods) of the Human class. What that means is that, if we create an object of the

Man class, it would have a copy of all the instance variables and instance methods that

are defined in the Human class, just as though they were defined in the Man class. That

is how inheritance works. Observe that at the top of the man.dart file, we have an

import statement that imports the animal.dart file. The import statement, helps us bring

in all the code that is in the animal.dart file, and makes it available in the man.dart file.

By so doing, the Human class becomes visible in the man.dart file, which makes it

possible for the Man class to extend it.

 In the program below, we’ve created an object of the Human and Man classes.

Again, notice that in order to create objects of these two classes, we had to import the

files which the classes are defined in, into the main.dart file, which we did on the lines 1

and 2.

106

Screenshot 7.12

Just as I explained earlier, every object of the Man class has a copy of the variables and

methods defined in the Human class. You can see how the man1 object is able to

access the gender, name and isAlive variables that were defined in the Human class.

 Note that a class can only extend one class at a time.

Overriding methods

A subclass can override the method(s) it inherits from its superclass. Overriding a

method simply means providing a custom implementation for the method. Using the

printGender, printName and printLivingStatus methods defined in the Human class for

example, the Man class can override their current implementation and provide a new

implementation. Let’s see how that can be done.

107

Screenshot 7.13

The Man class has overridden the methods it inherits from the Human class. Observe

the difference in the print statements in all the methods, compared to the ones in the

methods that are defined in the Human class (in Screenshot 7.9). Also, observe that

there is an @override annotation at the top of each method. The @override annotation

is a way we tell Dart, that we want to override a method (provide a different

implementation for the method, as opposed to the original implementation). Now, when

we create an object of the Man class and call any of the methods, we get the

implementation of the method in the Man class, not the one in the Human class. This is

shown in the example below.

108

Screenshot 7.14

Instead of the text “The name of this human is Moses Adebayo”, we get “The name of

this man is Moses Adebayo”, which is what is in the printName method that is defined in

the Man class. Feel free to call the other methods.

Static Members of a Class

Other than instance variables and methods, a class can also have static variables and

methods. Static variables and methods only belong to the class which they’re defined

in. Objects that are created from the class do not have a copy of them. If a static

variable is to be accessed, it is done using the class name. Let’s create a class that

contains a static variable and method. To do that, create a new file and call it

student.dart.

109

Screenshot 7.15

In the program above, the Student class has a static variable called schoolName. To

create a static variable, simply add the static keyword before the type of the variable as

was done for the schoolName variable above. This would tell Dart, that the variable

belongs only to the class and not to any object or instance of the class. To define a

static method, simply add the static keyword before the return type of the method, just

as is done for the readBook method above.

 The schoolName variable has been given an initial value, however it can be

changed, just like for instance variables.

110

Screenshot 7.16

A static variable is accessed using the name of the class. Observe how on line 8,

schoolName is accessed using the name of the class (Student) and the initial value that

was assigned is printed. While on lines 11 and 12, a new value is assigned to

schoolName and then printed. On line 15, the static method readBook is called and it

prints the expected message to the console.

Accessing schoolName or readBook using an object of the Student class won’t

be possible, because they’re static members of the Student class. Feel free to test that

out.

 You might be wondering what the usefulness of static variables and methods are

in a class. Why not simply make everything an instance variable or method? Usually, it

is good to make a particular variable or method static when that variable or method is

common to all objects that would be created from that class. Take the Student class for

example, the schoolName attribute is common to all Student objects. All Student objects

have the same school name. Imagine the Student class was for the students of the

University of Benin. All students of the University of Benin have the same school name,

111

so it would be best to make such a variable in a Student model class static, because it

would never change for any of the student objects. It is same with the readBook

method, all students read their books, so such a method in a Student model class is

best made static.

Revisiting the Earlier Types

In chapter 2, we looked at how to use the int, double, String, bool, List, and Map

types to define variables. In that chapter, we didn’t really go into much detail on how

variables that are created with these types can be manipulated or the kinds of

operations that can be performed on them. I decided to introduce all of that to you after

you must have learnt about Object Oriented Programming.

 It is important you know that everything in Dart is an object, even the number 2 is

an object. The int, double, String, List, and Map types are actually predefined classes

that provide some methods and properties for their objects.

Int

When you declare a variable to be of type int, various operations can be performed on

that variable. We shall look at the following operations:

9. toDouble

10. abs

11. isEven

12. toString

13. int.parse

toDouble

This int method turns an integer value into a decimal value.

112

Screenshot 7.17

You can see from the screenshot above, in the program, the method toDouble was

called on the integer value 2, to turn it into a double value. It becomes 2.0 which is

shown in the console.

abs

When the abs method is called on an integer value, it returns the absolute value of it. If

it is called on a positive integer value, it simply returns the value, but if it is called on a

negative integer value, it returns the absolute (positive) value of it.

Screenshot 7.18

113

isEven

The isEven property returns true, if an integer number is even, else it returns false.

Screenshot 7.19

toString

The toString method is a very special method, it can be called on any object in Dart, not

just on an int object. The toString method turns an object to its String equivalent. If the

toString method is called on an integer value, it turns it into a String value.

114

Screenshot 7.20

Notice how the runtimeType property is used to obtain the type of an object when the

program is executed.

int.parse

The int.parse method can be used to turn a String value into an int value. Although a

condition has to be satisfied, the String value must be an integer number. It isn’t

possible to use the int.parse method to convert a String value that isn’t an integer

number into an int value.

115

Screenshot 7.21

double

Just like the int type, when you declare a variable to be of type double, various

operations can be performed on the variable. We shall look at the following operations:

1. toInt

2. toString

3. floor

4. ceil

5. truncate

toInt

The toInt method turns a decimal value into an int value.

Screenshot 7.22

toString

The toString method turns a double value into a String value (i.e. the String equivalent).

116

Screenshot 7.23

Here, the type of strVal is printed as proof that the value it contains is a String value.

floor

The floor method rounds down a decimal value to its nearest whole number. The result

is usually an integer.

Screenshot 7.24

ceil

The ceil method rounds up a decimal value to its nearest whole number. The result is

usually an integer.

117

Screenshot 7.25

truncate

The truncate method removes the fractional part from a decimal number. It results in an

integer value.

Screenshot 7.26

String

The String class defines a lot of methods and properties that String objects can use,

some of them include:

118

1. toUpperCase

2. toLowerCase

3. trim

4. split

5. isEmpty

6. length

toLowerCase

The toLowerCase method transforms the uppercase letters of a string to their lowercase

equivalent.

Screenshot 7.27

toUpperCase

Just as you probably guessed it, the toUpperCase method transforms the lowercase

letters of a string to their uppercase equivalent.

119

Screenshot 7.28

length

The length property returns the number of characters that are in a String value.

Screenshot 7.29

Know that the spaces in a String value also count as characters in it.

trim

The trim method removes the spaces (if any) that are present at the left and right part of

a String value.

120

Screenshot 7.30

split

The split method is used to divide up a String value using a particular pattern or

character.

Screenshot 7.31

When the String value has been split, the result String values are put into a list.

121

isEmpty

The isEmpty method returns true if a String value is empty (contains no characters),

otherwise it returns false, when the String value contains characters.

Screenshot 7.32

List

The List type defines several methods or operations that can be carried out on a list.

1. add

2. remove

3. removeAt

4. indexOf

5. contains

6. isEmpty

7. map

8. forEach

add

After a list is created with some initial items, more items can be added to it at a later

point in time using the add method. The new item to be added is passed as an

argument to the add method.

122

Screenshot 7.33

remove

An item in a list can be removed using the remove method. The item to be remove is

passed to the remove method when it is called.

123

Screenshot 7.34

removeAt

The removeAt method is used to remove an item at a particular position in the list. The

index or position of the item is passed to the removeAt method when it is called.

124

Screenshot 7.35

indexOf

The indexOf method returns the index or position of an item in a list. The item is passed

to the indexOf method when it is called.

Screenshot 7.36

125

contains

The contains method returns true if a list contains a particular item, otherwise it returns

false.

Screenshot 7.37

isEmpty

The isEmpty property returns false if a list contains at least one (1) character, otherwise

it returns true.

Screenshot 7.38

126

Screenshot 7.39

map

The map method is used to transform the items in a list, by performing an operation on

each item. The transformed items are put into a new list.

Screenshot 7.40

Notice that the toList method had to be called on what is returned by the map method.

This is because, the map method returns an Iterable, which is a kind of list, but not the

type of list we can deal with directly. So, we have to call the toList method on that

Iterable, to turn it into a list that we can use directly.

127

forEach

The forEach method can be used to apply an action to each item in a list. It loops

through all the items in a list and performs a specified operation of each one.

7.41

Screenshot

Map

The Map type also defines some methods or operations that be performed on a Map

object, some of which include:

1. containsKey

2. containsValue

3. remove

constainsKey

Just as you may have guessed it, the containsKey method checks if a map contains a

key. If it does, it returns true, otherwise it returns false.

128

Screenshot 7.42

containsValue

The containsValue method checks if a map contains a value. If it does, it returns true,

otherwise it returns false.

129

Screenshot 7.43

remove

The remove method removes a value from a map using the key.

Screenshot 7.44

We’ve explored some of the methods and operations that can be performed on the

objects that are created using the inbuilt Dart types. Not all of them were covered, so I

encourage you to take out time to try out each one and learn how it works.

One thing you may have observed is that some of the types have common

methods and properties. Like the length property and the toString method for example.

These methods and properties that are common to most of the inbuilt types and even

the types (classes) you create, are all defined in the Object class. The Object class is

the ancestor of every class, both the inbuilt classes and the classes created by you.

130

Every other class extends the Object class implicitly, thereby inheriting the methods and

properties in the Object class. Although some classes have to override some of the

methods they inherit from the object class, so as to provide a different implementation

for the method.

131

Chapter Eight

Advanced Topics: Generics, enum, Exceptions and

Asynchronicity

In this chapter, we shall look at some advanced topics of the Dart Programming

language; Generics, Enum, Exceptions and Futures. A good understanding of these

concepts is required to be able to write fluid code.

Generics

In very simple terms, Generics are a way of writing code that is type safe. It is used to

ensure type safety.

 Remember when I first showed you how to define a list in chapter two (2). The

lists we defined could contain items of any type (String, int, double, bool, etc.). With

Generics, we can define a list that would contain only items of a specific type. Let’s see

an example on this.

132

Screenshot 8.1

Observe how the evenNumbers list was defined. When a list is declared that way, it

means that the list can only items of type int. So, it becomes impossible to add a

different kind of item to the list, doing so would result in an error. List<int> is read as

List of type int.

 Also, observe how the primeNumbers list was defined on line 7. There, the list

was initialized using the list constructor, which is another way of initializing a list.

Although it doesn’t provide a way of specifying initial items for the list, as opposed to

when a list literal ([]), i.e. the square brackets is used in initializing a list.

 Other than creating lists that contain just integers, it is possible to create a list

that contains items of any type. All that is required is to wrap the desired type with angle

brackets. Here’s a list that contains just String values.

Screenshot 8.2

The declaration of the names list takes a different turn from how the previous lists were

defined. Notice how the square brackets and the String type is attached to the List

constructor call and not to the List type at the left. This is another valid syntax for using

generics in defining a list. The same could be done when using the list literal ([]), i.e. the

square brackets, the <String> would be added before the list literal, as shown below.

Screenshot 8.3

133

Generics can also be applied when defining a map. Although applying generics in the

creation of maps is slightly different from that of a list. This is due to the fact that a map

is made up of key-value pairs.

Screenshot 8.4

The maps in the above program contain just String keys and integer values. It is

possible to define a map that contains keys of any type and values of any type.

Although, it is common to find maps that have their keys as Strings.

enum

enum provides a way for you to define your own custom data type. Remember the bool

type, which is used to define variables that can contain only two kinds of values (true or

false). Well, you could create your own custom type and provide a limited amount of

134

values that are allowed when it is used to define a variable. Let’s see how that can be

done.

Screenshot 8.4

As shown above, the keyword enum is used when creating a custom type. In the

example code, Weekday is the type, while Monday, Tuesday, Wednesday, Thursday

and Friday are the only values that can be assigned to a variable of type Weekday.

Observe how the value Monday is assigned to the today variable on line 6 in the

program. Also, notice how all the values of the Weekday type are retrieved using the

Weekday.values property.

 The permitted values for a custom type created with enum, could be as many or

as few as your program requires.

Exceptions

Exceptions are basically errors, they’re errors that could occur in a program at runtime.

When such an error occurs, it could lead to an abrupt end of the program, if the error is

not properly managed. A good example of an exception is using the addition operator

(+) to add null to a number (e.g. 2).

135

 One of the ways that Dart handles exceptions is the use of a try-catch block.

Let’s see an example on this.

Screenshot 8.5

The program in the screenshot above contains an error that would manifest at execution

time. Variable b is assigned the value 2, while variable isn’t assigned any value,

therefore it holds the default value null. On line 4, the program tries to add the values of

these two variable together, but it is unable to, because it isn’t possible to add null to an

actual value. As a result, an exception is raised and the program crashes at that point.

 A proper way to write code that may be subject to runtime errors is to wrap the

code in a try-catch block. Doing so, makes it possible to properly handle any error that

could occur while the program is executing. Let’s rewrite the previous code using a try-

catch block.

136

Screenshot 8.6

To use the try-catch block, wrap the code that an error may occur, inside the try block,

then specify how you want to handle the possible error in the catch block. With the try-

catch block, we’re able to catch the error and handle it the way we want, thereby

preventing the program from crashing. Here, I’ve simply printed a message to the

console. You could define any appropriate handle for the error that occurs in your

program. The catch block is called with the error that occurred from within the try block,

so it is good to make use of the error object that gets passed when the error indeed

happens, as shown below.

137

Screenshot 8.7

Asynchronicity

So far, we’ve only written code where each line of the code is executed immediately,

before the next line, or each block gets executed before the next line or the next block.

Such code is referred to as synchronous code. However, there are some programs or

applications that contain code that takes time to execute. Such code is referred to as

asynchronous code. A good example is an application that performs database access

or network calls, or accesses some device features like the Camera, Barometer, Flash

light, etc. The code to perform these operations wouldn’t necessarily get executed

immediately, it may take some time between when the request is made and a response

gotten. Where the response could be the desired result, or an error.

 Dart provides two ways of writing asynchronous code, which includes:

1. The Future class

2. async/await syntax.

Future class

To demonstrate how to use the Future class in writing asynchronous code, I am going

to write code that takes some time to execute.

138

Screenshot 8.8

The program in the screenshot above uses the Future.delayed constructor, which is a

named constructor of the Future class, to simulate a time taking process. The

Future.delayed constructor takes two required arguments. First is the amount of time it

would take before the future resolves (produce a result or an error). The time is

specified using a Duration object, which accepts time in microseconds, milliseconds,

seconds, minutes, hours, and days. Here, I chose just 3 seconds. Meaning, it would

take about 3 seconds before the future resolves with a result or an error. The second

argument is a function that would get called when the specified duration (3 seconds in

this case) is reached. Here, I’m simply returning a String value, which would serve as

the result of the future, when it eventually resolves.

 The then function is used in retrieving the result of the future, when it has

resolved. Notice that a callback function that has a parameter (in this case result) is

passed to the then function as an argument. The callback function would be called by

the then function, once the future resolves with a valid result.

 In the console view, notice that the print function that outputs the string Hello

there!, is printed executed before the result of the future is outputted by the callback

function. The reason why this happens would be explained when we look at how to

write asynchronous code using the async/await syntax.

139

A future may not always resolve with a desired result, sometimes an error may occur.

To handle such an error, the Future class provides the catchError function which can be

called on a Future object, to handle whichever error that arises while the future is being

resolved.

Screenshot 8.9

Remember that the operation of adding a number (e.g. 2) to null results in an error.

When the error occurs, the future resolves and yields an error, which is caught by the

catchError function and passed as an argument to a callback function. Here, I’ve

handled the error by printing a simple message. Observe that the then function doesn’t

get called, because the future resolved with an error, not a result.

async/await

Asynchronous code can also be written using the async/await syntax. The async/await

syntax as you would see, provides a simpler and more readable way for writing

asynchronous code.

140

Screenshot 8.10

The asynchronous code in screenshot 8.8 has been rewritten using the async/await

syntax. Notice that on line 1, the keyword async is placed before the body of the main

function. It is required that any function that uses await, must have its body decorated

with the async keyword. On line 3, the keyword await is used in preceding the call to

the Future.delayed constructor. The effect of that is to pause the execution of the

program, till the future resolves. All the code that comes after it won’t be executed until

the future resolves. What that means is that the print function on line 8 that prints the

result of the future won’t be executed, as well as the print function that prints Hello

there!

That is one of the differences between using the Future class and using the async/await

syntax.

 When the Future Class is used (i.e. using the then function to get the result of the

asynchronous operation), the code that comes after the then function is executed even

though the future has not resolved. It is only the code that is inside the callback function

that is passed to the then function that isn’t executed, until the future resolves. While for

async/await, the code that comes after await, doesn’t get executed, until a result is

gotten from the asynchronous operation.

 When using async/await, in order to catch and handle errors that may occur from

an asynchronous operation, the code that uses await is wrapped in a try-catch block, as

shown below.

141

Screenshot 8.11

Now, any error that arises during the asynchronous operation, can be caught and

handled.

